PHYSICAL REVIEW E, VOLUME 65, 021106
Free random Levy matrices
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Using the theory of free random variables and the Coulomb gas analogy, we construct stable random matrix
ensembles that are random matrix generalizations of the classical one-dimensional Stgldéstrébutions.
We show that the resolvents for the corresponding matrices obey transcendental equations in the large size
limit. We solve these equations in a number of cases, and show that the eigenvalue distributions ewpibit Le
tails. For the analytically known vy measures we explicitly construct the density of states using the method
of orthogonal polynomials. We show that theviyetail distributions are characterized by a different novel form
of microscopic universality.
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There is a wide and growing interest in stochastic pro-In this paper we are interested in stable random matrix en-
cesses with long tails in relation to self-similar phenomenasembles, i.e., ensembles where the averaging is carried using
Long tails cause the two-dimensional random walk to besome pertinent measure of the form
attracted to Ley stable fixed points with ubiquitous physical
properties such as intermittent behavior and anomalous dif- e~ NTTV(M) g M %)
fusion. Physical examples include charge carrier transport in '
amorphous semiconductors, vortex motion in high tempera-
ture superconductors, moving interfaces in porous medidyloreover, we require that the eigenvalue distribution of the
spin glasses, and anomalous heat flow in heavy ion collisionsumM =M+ M, where botiM; andM, have the measure
[1-4]. Levy distributions have also found applications in of the form(2), is the saméup to a shift and/or rescalings
biophysics, health physics, and finan¢bs-7]. Their impor-  for each individual matrixvi; and M,. We emphasize that
tance stems from their stability under convolution, i.e., thewe will require this property to be necessarily true only in
sum of two Levy distributed random variables follows also a the limit N—. If the second moment exists, then the en-
Levy distribution. semble is Gaussian. In the opposite case there exist, how-

In the realm of complex and/or disordered systems, thever, alternate ensembles that are the matrix analogs of the
theory of random matrices plays an important role in differ-classical one-dimensional iz distributions. The potential
entiating noise from information. Also, it allows for a generic V(M) need not be analytic iM (see below. In general, it is
analysis of complex phenomena in the chaotic regime usingonvenient to introduce the Green’s function
random matrix universality. So far, there does not seem to be
a developed theory of random e matrices, with the ex- 1 1
ception of[8] that is not based on free random variables G(z)= —<Tr > (3
(FRV). The reasons are twofold. iz distributions are usu- z—M
ally defined by their characteristic functions, while their
probability density functions are very complicated and canThe eigenvalue distribution follows from the discontinuity of
usually be expressed only indirectly through integrals. Sec(z) along the real axis, i.eg(A\)=—ImG(\+i0)/.
ond, Levy distributions do not have finite second and higher The notion of addition laws of the tydd =M, + M, has
moments, making standard techniques of random matrigeen analyzed in the context of the theory of FRV, a gener-
theory usually of little use. alization by Voiculescii9] of classical probability theory to a

The aim of this paper is to provide an appropriate genernoncommutative setting. The abstract concepts of operator
alization of the classical stable one-dimensionah distri-  algebras and free random variables can have an explicit re-
butions to the random matrix setting and show a differenflization in terms of large random matrices. Hence, FRV
form of universal scaling in the tails. techniques provide a novel and powerful way of analyzing

The fundamental problem in random matrix theory is tothe spectra of random matricgk0,11]. In this framework the
find the distribution of eigenvalues in the largeN (size of  determination of stableigenvalue distributionsan be per-

M) limit, i.e., formed algebraically in a very general setting. This has been
done by Bercovici and Voiculesdu2]. However, the draw-
N back of such an abstract approach is that the explicit random
— £< > )\_)\i)> _ i(Tr SN=M)). (D) matrix ensemble_s corres_;ponding .to the;e Qistributions are
N unknown. The aim of this paper is to fill this gap, as the
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knowledge of explicit stable random matrix ensembles withFor «=1/4,1/3,1/2,2/3,3/4,4/3,3/2, and 2 the algebraic
power-law tails might be interesting for the various applica-equation(7) is exactly solvable. The ensuing distribution

tions we have cited. of eigenvalues obeys the scaling property,(\)
The remarkable achievement by Bercovici and Voiculescu= p(yY*\)/yY*, with the asymptotic form p(\)
[12] is an explicit derivation of allR transforms{defined  ~sin(wa/2)/m\1** (for B=0). Also Pa,p

by the equationR[G(z)]=z—1/G(z) where G(z)=(1/(z =pl,a’3,(1/x“)/x”“ for 1<a<2 and B'=(a—1)—(2
—\))} for all free stable distributions, without recourse to a — ) 8 [13] and in analogy with the duality relatiof&4].
matrix realization. Indeed, Bercovici and Voiculescu have We now seek Hermitian ensembles with the measRye

found thatR(z) can have the trivial fornR(z)=a or such that the corresponding\) coincides with the largél
1 limit of the mean eigenvalue distribution. The resulting en-
R(z)=a+bz" ", (4 sembles will then be automatically stable in e limit.

For the unitary ensemble, the standard procedure of diago-
nalizingM—UAUT and integrating out) gives rise to the
standard joint probability distribution for the eigenvalues

where 0Ka<2 anda#1, ais a real shift parameter, and
is a parameter that can be related to the slepskewnes$,
and rangey of the standard parameterization of stable distri-
bution[12,13. These parameters are related to the asymptot-

ics of p(\) at . Indeed, when p(\y, . ”1)\N)]'_i'[ dhi:H d)\iefNV(Ai)L[j (Ni— )2,
C. (11
p(x)~)\1+a N— *oo, 5

A similar distribution holds for symmetric and skew-

then B=(C.—C_)/(C.+C_) and y=y,(C.+C_), symmetric ensembles. For lar@f the corresponding parti-

while a governs the powerlike asymptotics ang, is an  tion function can be analyzed in terms of the Coulomb gas
a-dependent numerical coefficient. action with a continuous eigenvalue distributiifx) as

originally suggested by Dysdri5]. Specifically,
yelle@=1A+Bm  for 1<a<?2

T yelr@2Hm  for o< a<t’ S(p)
N2

b
:J d)\p()\)V()\)—f dhdNIn|A =N p(A\)p(N").

In the marginal case=1, R(z) reads (12)

. 2By
R(z)=a—iy(1+B)— Tln VZ. (6) A functional and a standard differentiation yield,

The branch cut structure &f(z) is chosen in such a way that p(N\")

the upper complex half plane is mapped to itself. Recalling Vi(N)=2 Pf d)\’)\_—)\,, (13
that R=z—1/G in the largeN limit, one finds that for the
trivial caseR(z) =a, the resolvenG(z)=(z—a) !, and the
spectral distributiorp(\) = 8(\ —a). Otherwise, on the up-
per half plane, the resolvent fulfills an algebraic equation

where P denotes the principal value of the integral. The
knowledge ofV(\) plus the boundary conditions on the sin-
gular integral equation allow to find the spectral function

bG%(z)—(z—a)G(z)+1=0, 7) [16]. Conversely, from the knowledge of the spectral func-
tion we can deduce the shape of the potential, hence the
or in the marginal casea(=1), weight of the probability distribution for the matrix en-

semble. This is the route for implementing the FRV results
on random matrix ensembles as we now show.
Using the formula 1 +ig)=P(1A) *i7S(\), we get a
(8)  formula for V’()\) in terms of the real part of the resolvent
. on the cutV’'(\)=2 ReG(\). We can now use the resol-
On the lower half pland5(z) = G(2) [12]. The solution of  yents found in Sec. Il to reconstruct the potential and hence,
the latter equation will not be discussed here, except fofo explicitly define a random matrix realization of the free
B=0 for which it simplifies to stable Ley ensembles. Below, we reconstruct the pertinent
measures for matrix analogs of the Caucky=1,8=0) and
- - (9) Lévy-Smirnov (@=1/2,8=+1) distributions. In the cases
z—(a—iy) a+1/4,1/3,1/2,2/3,3/4,4/3,3/2 such construction can be per-
formed numerically. Some general results can be achieved
ithout these specifics as we will show below.
In the case of the Cauchy distribution, elementary integra-
1 tion givesV'(\)=2\/(\*+b?), hence, the potential(\)
pN)== — L 100  =IN(\?+b?. In the case of the hy-Smirnov distribution,
T (N—a)’+ y? the Green’s function follows from

. 2By
[z—a+iy(1+B)]G(z)+ TG(Z)"} vyG(z)—1=0.

G(z)=

Thus in this case the spectral density has the form of
Cauchy distributionLévy with a=1),
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—j 1 ( 1) —1/2
T I''N—-n—-=
G ® (14 b - | (LE=2N 2
" 22 " T(N-n)
which can be easily solved to yield
Y y x Mg N NGix). (19
G(z)= L V42_1_ (15) A second surprise comes from the fact that the eigenvalue
222 distribution is exactly equal tp(\)=1/7w(A?+ 1), and does
not depend orN. There are no finitdN corrections whatso-
Evaluating the real part giveg’(\)=2/\ — 1/\?, so that ever to the spectral distribution. In particular the classical
short distance oscillations in the spectral density characteris-
1 5 tic for random matrix models are absent. The Cauchy en-
V(M)=exp =NTr| -+ InM7 . (16)  semble has, however, nontrividlkdependent two-point cor-

relation functions.
The Levy-Smirnov ensemble can be analyzed starting

The spectral function follows from Eq$3) and (21) and from the distribution(11) with the measuré16)

readsp(\)=1/(27) V4N — 1/N2.

Here, a word of caution is in order. In writing down for- “Ny
mula (16) one has to restrict pneself to r_natncgs that haye H d)\i( )H ()\i_)\j)z_ (20)
non-negative eigenvalues. This assumption will be used in i AN
the sequel to construct the Coulomb gas representation of the
Lévy-Smirnov ensemble. Instead of restricting the domain ofin the above formula the\;’s are assumed to beon-
matricesM to be explicitly positive definite one may repre- negative A change of variablex;=1/x; leads to
sent all such matrices throughh=/CC', and integrate over
the complex matrice€ without any restrictions. If one fol- Nx
lows this route an appropriate Jacobian for the change of H dxi(e NX')LIJ. (Xi_xj)z- (21
variablesM =+/CC'" has to be includedWishart measure

[17]). The important point, however, is that the Coulomb gasThis is readily analyzed in terms of Laguerre polynomials
representation remains unchanged. similar to chiral Gaussian unitary ensembleRGUE) [19].

In general, the asymptotic form of the potential for large|ndeed the appropriate polynomials are
eigenvalues reads

i<j

Pa(x)=VNLR(NX). (22
1 1
V(M) =In\2— 2; Reb; T A7 The eigenvalue density can be written, using the Christoffel-
Darboux identity, as

In all Lévy cases the Ia? contribution in the potential is N~ Nxr1 0 1 0 1
fixed, and is equivalent in the measure to Mewith a fixed p(X)=Ne VTLy_ 1(NX)Ly_1(NX) = LR(NX)L{_2(NX)].
power —2N. As can be shown, a deviation from 2 leads to a (23
finite support of eigenvalues. The coefficient of the secon
term in the potential can vanish in some notable cases su
as, e.g., for the Ley-Smirnov ensemble. In the next section
we will analyze in greater detail the stable vyerandom
matrix ensembles defined above.

Both the Cauchy and lwy-Smirnov ensembles can be
studied analytically at finitdN using the orthogonal polyno-
mial method. It turns out that the above ensembles have p(s):‘]g(z‘/g)JrJi(z‘/g)' (24)
some unexpected features that do not appear in the classical . . ) , ) i
case when/(M) is a polynomial inM. For the Cauchy ran- Going back to the original variables, the microscopic region

. . _ 2 .
dom matrix ensemble the orthogonal polynomials satisfy ~CO'responds to the region @irge eigenvaluesk =N-A in
the powerlike tail. For theskarge eigenvalues we therefore

observe chGUE-like oscillations

jﬂ particular we note that there exists a well defined micro-
scopic limit that corresponds to expressing the eigenvalue
density in terms ofx=s/N? (i.e., on the scale of the
eigenvalue spacing The relevant eigenvalue density
(1/N)p(s/N?) is then given by

J AN(A2+1) " 2NPL(N)P (M) = - (18)

AN)=—1{3—=|+3 —=] ;. 25)
We see that in contrast to the classical case onfjnite p(A) Az[ 0( \/K) l( \/X)] (

number of orthogonal polynomials exist. These are explicitly

given by Jacobi polynomials analytically continued to com-Moreover, we expect these oscillations toureversalin the
plex parametergAfter completing the paper, we noticed that following sense. A generic modification of theS potential
a similar construction was recently usedi8].) Indeed, of the form
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1 g, s correlation functions in both models requires much more
VN =logh2+ —+ =+ =+, (26)  analytical and numerical work, which goes beyond the scope
D S of the present paper.

. o ) Finally, we will speculate on the potential relevance of the
will not change the oscillation patter25). This follows  present study to the statistical analysis of evolving networks
from the results if21] after the change of variables—Xx  (for recent reviews, sek26,27). Indeed, it was realized re-
=1/\. The coefficient in front of the logarithm cannot be cently that most of the large artificial networks.g., Inter-
changed, for otherwise the eigenvalue support becomes finiige as well as biophysical and socioeconomic netwdgs
and the powerlike tails disappear altogether. The coefficientsalled scale-free networks display unusual spectral
of the 1A term (and highery;’s) only affect the length scale properties. In the case of the classical netwofiendom
of the universal oscillations. graph theory of Erd®and Reny|28]) the spectral properties

In the general case when the potential is of the f¢t@),  are given by the semicircle law of GOE, whereas in the case
and the asymptotic behavior pf\) is similar to 1A ¢, the  of sc_ale—f(ee networks the spectral density of the adjacency
mapping A—x=1/\ gives an effective potential/(x)~ matrices is a power law, with almost universal exponents
—2 Rebx*/ @, and an eigenvalue distributiop(x)~x*~*.  belonging to the Ley stability window. Recent and indepen-
General argumentf22] show that the resulting eigenvalue dent studies ofllarge.data sets using random network covari-
spacing 14V yields a microscopic distribution in the limit 2nces29] and financial covariancg&5] show close relation
of N—o with s=xN" fixed. The pertinent orthogonal to the random Levy matrix theory dlscusse_d here, W|t_h even
polynomials should satisfy S|m|_lar power-law exponents. Therefqre, it is tempting to

conjecture that the random Levy matrix theory is for scale-
free networks, whereas Gaussian random matrix theory is for

f dxe NVOIP (X)P(X) = Spm, (27)  classical random graphs.
We have explicitly constructed matrix realizations of free
with V(x)~ —2 Rebx®/a+ - --. Here, the next-to-leading random variables, with potential applications to a number of

es_tochastic phenomena. This opens several venues for apply-
ing FRV calculus to Ley processes, including convolution,
multiplication and addition of deterministic matrixlike en-
tries, and other generalizations. Using the Coulomb gas anal-
ogy, we have shown that the exact matrix measure in the case

AII this is very reminiscent qf mult|cr|t|c§I microscopic scgl— of powerlike spectra is nonlocéhvolves determinanisThe
ing and universalitf22—-24 in the classical random matrix construction exhibits several nontrivial features, among

case but here the “multicritical classes” are labeled be@  \yhich the most interesting ones are a universal behavior in

parameteir and not by annteger A thorough investigation  the tails of the distributions and an unusual laiscaling.

of this regime seems to be very interesting. This behaviorhe expected microscopic eigenvalue distribution defines a

may be relevant for studying the critical behavior of QCD atuniversal regime and represents a generalization of the mul-

the chiral restoration poirl22,23, in light of the fact that ticritical scaling discussed if22—24. We also pointed out

the lattice data suggest non-mean-field critical exponents. the possible relevance of our results for the rapidly growing
Let us comment briefly on the comparison between thdield of scale-free networks. Several of these issues, as well

matrix ensemble discussed[i8] and ours. The ensemhbl®]  as practical applications of our results are discussed in sub-

by construction is not rotationally invariant, therefore, is notsequent work25].

stable under the matrix convolution law. It is also not ame-

nable to several mathematical methods developed in standard ACKNOWLEDGMENTS
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