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Free random Lévy matrices
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Using the theory of free random variables and the Coulomb gas analogy, we construct stable random matrix
ensembles that are random matrix generalizations of the classical one-dimensional stable Le´vy distributions.
We show that the resolvents for the corresponding matrices obey transcendental equations in the large size
limit. We solve these equations in a number of cases, and show that the eigenvalue distributions exhibit Le´vy
tails. For the analytically known Le´vy measures we explicitly construct the density of states using the method
of orthogonal polynomials. We show that the Le´vy tail distributions are characterized by a different novel form
of microscopic universality.
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There is a wide and growing interest in stochastic p
cesses with long tails in relation to self-similar phenome
Long tails cause the two-dimensional random walk to
attracted to Le´vy stable fixed points with ubiquitous physic
properties such as intermittent behavior and anomalous
fusion. Physical examples include charge carrier transpo
amorphous semiconductors, vortex motion in high tempe
ture superconductors, moving interfaces in porous me
spin glasses, and anomalous heat flow in heavy ion collis
@1–4#. Lévy distributions have also found applications
biophysics, health physics, and finances@5–7#. Their impor-
tance stems from their stability under convolution, i.e.,
sum of two Lévy distributed random variables follows also
Lévy distribution.

In the realm of complex and/or disordered systems,
theory of random matrices plays an important role in diff
entiating noise from information. Also, it allows for a gener
analysis of complex phenomena in the chaotic regime us
random matrix universality. So far, there does not seem to
a developed theory of random Le´vy matrices, with the ex-
ception of @8# that is not based on free random variab
~FRV!. The reasons are twofold. Le´vy distributions are usu-
ally defined by their characteristic functions, while the
probability density functions are very complicated and c
usually be expressed only indirectly through integrals. S
ond, Lévy distributions do not have finite second and high
moments, making standard techniques of random ma
theory usually of little use.

The aim of this paper is to provide an appropriate gen
alization of the classical stable one-dimensional Le´vy distri-
butions to the random matrix setting and show a differ
form of universal scaling in the tails.

The fundamental problem in random matrix theory is
find the distribution of eigenvaluesl i in the largeN ~size of
M ) limit, i.e.,

r~l!5
1

N K (
i 51

N

d~l2l i !L 5
1

N
^Tr d~l2M !&. ~1!
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In this paper we are interested in stable random matrix
sembles, i.e., ensembles where the averaging is carried u
some pertinent measure of the form

e2NTr V(M )dM, ~2!

Moreover, we require that the eigenvalue distribution of t
sumM5M11M2, where bothM1 andM2 have the measure
of the form~2!, is the same~up to a shift and/or rescaling! as
for each individual matrixM1 and M2. We emphasize tha
we will require this property to be necessarily true only
the limit N→`. If the second moment exists, then the e
semble is Gaussian. In the opposite case there exist, h
ever, alternate ensembles that are the matrix analogs o
classical one-dimensional Le´vy distributions. The potentia
V(M ) need not be analytic inM ~see below!. In general, it is
convenient to introduce the Green’s function

G~z!5
1

N K Tr
1

z2M L . ~3!

The eigenvalue distribution follows from the discontinuity
G(z) along the real axis, i.e.,r(l)52Im G(l1 i0)/p.

The notion of addition laws of the typeM5M11M2 has
been analyzed in the context of the theory of FRV, a gen
alization by Voiculescu@9# of classical probability theory to a
noncommutative setting. The abstract concepts of oper
algebras and free random variables can have an explici
alization in terms of large random matrices. Hence, F
techniques provide a novel and powerful way of analyz
the spectra of random matrices@10,11#. In this framework the
determination of stableeigenvalue distributionscan be per-
formed algebraically in a very general setting. This has b
done by Bercovici and Voiculescu@12#. However, the draw-
back of such an abstract approach is that the explicit rand
matrix ensembles corresponding to these distributions
unknown. The aim of this paper is to fill this gap, as t
©2002 The American Physical Society06-1
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knowledge of explicit stable random matrix ensembles w
power-law tails might be interesting for the various applic
tions we have cited.

The remarkable achievement by Bercovici and Voicule
@12# is an explicit derivation of allR transforms$defined
by the equationR@G(z)#5z21/G(z) where G(z)5^1/(z
2l)&% for all free stable distributions, without recourse to
matrix realization. Indeed, Bercovici and Voiculescu ha
found thatR(z) can have the trivial formR(z)5a or

R~z!5a1bza21, ~4!

where 0,a,2 andaÞ1, a is a real shift parameter, andb
is a parameter that can be related to the slopea, skewnessb,
and rangeg of the standard parameterization of stable dis
bution @12,13#. These parameters are related to the asymp
ics of r(l) at 6`. Indeed, when

r~l!;
C6

l11a
l→6`, ~5!

then b5(C12C2)/(C11C2) and g5ga(C11C2),
while a governs the powerlike asymptotics andga is an
a-dependent numerical coefficient.

b5H g ei [(a/2)2](11b)p for 1,a,2

g ei [p1(a/2)(11b)p] for 0,a,1
.

In the marginal casea51, R(z) reads

R~z!5a2 ig~11b!2
2bg

p
ln gz. ~6!

The branch cut structure ofR(z) is chosen in such a way tha
the upper complex half plane is mapped to itself. Recall
that R5z21/G in the largeN limit, one finds that for the
trivial caseR(z)5a, the resolventG(z)5(z2a)21, and the
spectral distributionr(l)5d(l2a). Otherwise, on the up
per half plane, the resolvent fulfills an algebraic equation

bGa~z!2~z2a!G~z!1150, ~7!

or in the marginal case (a51),

@z2a1 ig~11b!#G~z!1
2bg

p
G~z!ln gG~z!2150.

~8!

On the lower half planeG( z̄)5Ḡ(z) @12#. The solution of
the latter equation will not be discussed here, except
b50 for which it simplifies to

G~z!5
1

z2~a2 ig!
. ~9!

Thus in this case the spectral density has the form o
Cauchy distribution~Lévy with a51),

r~l!5
1

p

g

~l2a!21g2
. ~10!
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For a51/4,1/3,1/2,2/3,3/4,4/3,3/2, and 2 the algebra
equation ~7! is exactly solvable. The ensuing distributio
of eigenvalues obeys the scaling propertyrg(l)
5r(g1/a l)/g1/a, with the asymptotic form r(l)
'sin(pa/2)/pl11a ~for b50). Also ra,b
5r1/a,b8(1/xa)/x11a for 1,a,2 and b85(a21)2(2
2a)b @13# and in analogy with the duality relations@14#.

We now seek Hermitian ensembles with the measure~2!,
such that the correspondingr(l) coincides with the largeN
limit of the mean eigenvalue distribution. The resulting e
sembles will then be automatically stable in theN→` limit.
For the unitary ensemble, the standard procedure of dia
nalizing M→ULU† and integrating outU gives rise to the
standard joint probability distribution for the eigenvalues

r~l1 , . . . ,lN!)
i

dl i5)
i

dl ie
2NV(l i ))

i , j
~l i2l j !

2.

~11!

A similar distribution holds for symmetric and skew
symmetric ensembles. For largeN, the corresponding parti
tion function can be analyzed in terms of the Coulomb g
action with a continuous eigenvalue distributionr(x) as
originally suggested by Dyson@15#. Specifically,

S~r!

N2
5E dlr~l!V~l!2E dldl8lnul2l8ur~l!r~l8!.

~12!

A functional and a standard differentiation yield,

V8~l!52 PE dl8
r~l8!

l2l8
, ~13!

where P denotes the principal value of the integral. T
knowledge ofV(l) plus the boundary conditions on the si
gular integral equation allow to find the spectral functi
@16#. Conversely, from the knowledge of the spectral fun
tion we can deduce the shape of the potential, hence
weight of the probability distribution for the matrix en
semble. This is the route for implementing the FRV resu
on random matrix ensembles as we now show.

Using the formula 1/(l6 i«)5P(1/l)7 ipd(l), we get a
formula for V8(l) in terms of the real part of the resolven
on the cutV8(l)52 ReG(l). We can now use the reso
vents found in Sec. II to reconstruct the potential and hen
to explicitly define a random matrix realization of the fre
stable Lévy ensembles. Below, we reconstruct the pertin
measures for matrix analogs of the Cauchy (a51,b50) and
Lévy-Smirnov (a51/2,b561) distributions. In the case
aÞ1/4,1/3,1/2,2/3,3/4,4/3,3/2 such construction can be p
formed numerically. Some general results can be achie
without these specifics as we will show below.

In the case of the Cauchy distribution, elementary integ
tion givesV8(l)52l/(l21b2), hence, the potentialV(l)
5 ln(l21b2). In the case of the Le´vy-Smirnov distribution,
the Green’s function follows from
6-2
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2 i

AG
1

1

G
5z, ~14!

which can be easily solved to yield

G~z!5
2z212 iA4z21

2z2
. ~15!

Evaluating the real part givesV8(l)52/l21/l2, so that

V~M !5expF2N TrS 1

M
1 ln M2D G . ~16!

The spectral function follows from Eqs.~3! and ~21! and
readsr(l)51/(2p)A4l21/l2.

Here, a word of caution is in order. In writing down fo
mula ~16! one has to restrict oneself to matrices that ha
non-negative eigenvalues. This assumption will be used
the sequel to construct the Coulomb gas representation o
Lévy-Smirnov ensemble. Instead of restricting the domain
matricesM to be explicitly positive definite one may repre
sent all such matrices throughM5ACC†, and integrate over
the complex matricesC without any restrictions. If one fol-
lows this route an appropriate Jacobian for the change
variablesM5ACC† has to be included~Wishart measure
@17#!. The important point, however, is that the Coulomb g
representation remains unchanged.

In general, the asymptotic form of the potential for lar
eigenvalues reads

V~l!5 ln l222
1

a
Reb

1

la
1•••, ~17!

In all Lévy cases the lnl2 contribution in the potential is
fixed, and is equivalent in the measure to detM with a fixed
power22N. As can be shown, a deviation from 2 leads to
finite support of eigenvalues. The coefficient of the seco
term in the potential can vanish in some notable cases s
as, e.g., for the Le´vy-Smirnov ensemble. In the next sectio
we will analyze in greater detail the stable Le´vy random
matrix ensembles defined above.

Both the Cauchy and Le´vy-Smirnov ensembles can b
studied analytically at finiteN using the orthogonal polyno
mial method. It turns out that the above ensembles h
some unexpected features that do not appear in the clas
case whenV(M ) is a polynomial inM. For the Cauchy ran-
dom matrix ensemble the orthogonal polynomials satisfy

E dl~l211!22NPn~l!Pm~l!5dnm . ~18!

We see that in contrast to the classical case only afinite
number of orthogonal polynomials exist. These are explic
given by Jacobi polynomials analytically continued to co
plex parameters.~After completing the paper, we noticed th
a similar construction was recently used in@18#.! Indeed,
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Pn~x!5S ~11n22N!n

22nn!
Ap

GS N2n2
1

2D
G~N2n!

D 21/2

3 i nJn
2N,2N~ ix !. ~19!

A second surprise comes from the fact that the eigenva
distribution is exactly equal tor(l)51/p(l211), and does
not depend onN. There are no finiteN corrections whatso-
ever to the spectral distribution. In particular the classi
short distance oscillations in the spectral density characte
tic for random matrix models are absent. The Cauchy
semble has, however, nontrivialN-dependent two-point cor
relation functions.

The Lévy-Smirnov ensemble can be analyzed start
from the distribution~11! with the measure~16!

)
i

dl iS e2N/l i

l2N D)
i , j

~l i2l j !
2. ~20!

In the above formula thel i ’s are assumed to benon-
negative. A change of variablesl i51/xi leads to

)
i

dxi~e2Nxi !)
i , j

~xi2xj !
2. ~21!

This is readily analyzed in terms of Laguerre polynomia
similar to chiral Gaussian unitary ensembles~chGUE! @19#.
Indeed the appropriate polynomials are

Pn~x!5ANLn
0~Nx!. ~22!

The eigenvalue density can be written, using the Christof
Darboux identity, as

r~x!5Ne2Nx@LN21
0 ~Nx!LN21

1 ~Nx!2LN
0 ~Nx!LN22

1 ~Nx!#.
~23!

In particular we note that there exists a well defined mic
scopic limit that corresponds to expressing the eigenva
density in terms ofx5s/N2 ~i.e., on the scale of the
eigenvalue spacing!. The relevant eigenvalue densit
(1/N)r(s/N2) is then given by

r~s!5J0
2~2As!1J1

2~2As!. ~24!

Going back to the original variables, the microscopic reg
corresponds to the region oflarge eigenvaluesl5N2L in
the powerlike tail. For theselarge eigenvalues we therefor
observe chGUE-like oscillations

r~L!5
1

L2 H J0
2S 2

AL
D 1J1

2S 2

AL
D J . ~25!

Moreover, we expect these oscillations to beuniversalin the
following sense. A generic modification of theLS potential
of the form
6-3
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V~l!5 logl21
1

l
1

g2

l2
1

g3

l3
1•••, ~26!

will not change the oscillation pattern~25!. This follows
from the results in@21# after the change of variablesl→x
51/l. The coefficient in front of the logarithm cannot b
changed, for otherwise the eigenvalue support becomes fi
and the powerlike tails disappear altogether. The coefficie
of the 1/l term ~and highergi ’s! only affect the length scale
of the universal oscillations.

In the general case when the potential is of the form~17!,
and the asymptotic behavior ofr(l) is similar to 1/l11a, the
mapping l→x51/l gives an effective potentialV(x);
22 Rebxa/a, and an eigenvalue distributionr(x);xa21.
General arguments@22# show that the resulting eigenvalu
spacing 1/N1/a yields a microscopic distribution in the limi
of N→` with s5xN1/a fixed. The pertinent orthogona
polynomials should satisfy

E dxe2NV(x)Pn~x!Pm~x!5dnm , ~27!

with V(x);22 Rebxa/a1•••. Here, the next-to-leading
terms have to be included, as the vanishing or singular
havior ofr(x) at x;0 requires fine tuning of the subleadin
coefficients~for the case without fine tuning, and hence wit
out a multicritical regime see the interesting paper of@20#!.
All this is very reminiscent of multicritical microscopic sca
ing and universality@22–24# in the classical random matri
case but here the ‘‘multicritical classes’’ are labeled by areal
parametera and not by aninteger. A thorough investigation
of this regime seems to be very interesting. This behav
may be relevant for studying the critical behavior of QCD
the chiral restoration point@22,23#, in light of the fact that
the lattice data suggest non-mean-field critical exponents

Let us comment briefly on the comparison between
matrix ensemble discussed in@8# and ours. The ensemble@8#
by construction is not rotationally invariant, therefore, is n
stable under the matrix convolution law. It is also not am
nable to several mathematical methods developed in stan
random matrix theory. As rotationally noninvariant, it exhi
its correlations between the eigenvectors~contrary to
GUE, GOE, GSpE, as well as the case considered he!,
which nevertheless, might be interesting phenomenolo
cally. The only study of both ensembles known to us de
with some bulk properties of financial data and the res
are, overall, similar@25#. The comparison of the higher-poin
-
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correlation functions in both models requires much mo
analytical and numerical work, which goes beyond the sc
of the present paper.

Finally, we will speculate on the potential relevance of t
present study to the statistical analysis of evolving netwo
~for recent reviews, see@26,27#!. Indeed, it was realized re
cently that most of the large artificial networks~e.g., Inter-
net! as well as biophysical and socioeconomic networks~so-
called scale-free networks! display unusual spectra
properties. In the case of the classical networks~random
graph theory of Erdo¨s and Renyi@28#! the spectral properties
are given by the semicircle law of GOE, whereas in the c
of scale-free networks the spectral density of the adjace
matrices is a power law, with almost universal expone
belonging to the Le´vy stability window. Recent and indepen
dent studies of large data sets using random network cov
ances@29# and financial covariances@25# show close relation
to the random Levy matrix theory discussed here, with ev
similar power-law exponents. Therefore, it is tempting
conjecture that the random Levy matrix theory is for sca
free networks, whereas Gaussian random matrix theory is
classical random graphs.

We have explicitly constructed matrix realizations of fr
random variables, with potential applications to a number
stochastic phenomena. This opens several venues for ap
ing FRV calculus to Le´vy processes, including convolution
multiplication and addition of deterministic matrixlike en
tries, and other generalizations. Using the Coulomb gas a
ogy, we have shown that the exact matrix measure in the c
of powerlike spectra is nonlocal~involves determinants!. The
construction exhibits several nontrivial features, amo
which the most interesting ones are a universal behavio
the tails of the distributions and an unusual largeN scaling.
The expected microscopic eigenvalue distribution define
universal regime and represents a generalization of the m
ticritical scaling discussed in@22–24#. We also pointed out
the possible relevance of our results for the rapidly grow
field of scale-free networks. Several of these issues, as
as practical applications of our results are discussed in s
sequent work@25#.
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